読者です 読者をやめる 読者になる 読者になる

緑蕪堂日記

現状を追認しない

代数的D加群と解析的D加群の違い

数学

堀田、谷崎、竹内先生らによるD-Modules, Perverse Sheaves, and Representation Theoryという本があり、分野を超えてD加群を知ろうとする人が参照する筆頭格であるように思う。その著者のひとりである竹内先生による、この本の概説をする講演を見かけたので紹介したい。

Computational Approach to Mathematical Sciences, Video Archives

タイトルは『代数的D-加群が解析的D-加群よりいかに簡単かについて(拙著の紹介)』というもので、煽りっぽいがこの講義を聞けば納得が行くことかと思う。私の狭い理解の中で端的に言えば、代数的D加群は局所的にWeyl algebraに帰着できてしまうそうだが(本質的には有理型関数を係数に持つ線型微分方程式である)解析的D加群では当然そう簡単ではない。自分は微分方程式に興味があるので代数的D加群に多くのベージ数が割かれている意図を理解していなかったのだが、解析的D加群では示すのがとても大変な定理が代数的D加群であると(そこそこの代数幾何の知識があれば)簡単に示せるという筋で、"handy"なモデルケースとして知っておくべきものであると認識するようになった。

微分方程式(D加群)の特性多様体の包合性も、Sato-Kawai-Kashiwaraのmicrodifferential operatorを使った解析的な証明、Gabbarによる純代数的な証明(ここまでは谷崎先生の非可換環で言及され、後者は証明が付いている)の他にKashiwara-Schapiraにおいてmicro supportを使った幾何的な証明が存在することを初めて認知した。「代数解析は幾何」というのにも納得である。

度々、

「解析的な場合はどうか」

「柏原先生が全部やりました」

という旨のやり取りがあり、柏原先生の業績の鬼さ加減を垣間見、畏敬の念を覚える他無い次第である。

ワシの中山の補題は百八式まであるぞ

数学

必要に駆られて代数幾何の人が息をするように使うという中山の補題を調べていたらこんなページに出くわした。

Stacks Project — Tag 07RC

中山の補題補題の12個のヴァリエーションを纏めて書いてある。凄まじい。代数(幾何)プロパーの人はこれ+αぐらいの主張は中山よりの一言で済ませるのではないかと思う。

個人的に欲しかったのは複素ベクトル束の切断の層という局所環上有限生成加群の範疇の話で、fiberのgeneratorがstalkのgeneratorになってくれるということだったのだが、fiberの間に全射があればgermの間にも全射が持ち上がるであるとか、free⇔projectiveであるとか、of finite typeなD加群はfree(freeだとflat connectionになって嬉しい)とかいう話を示すのに使えるので、確かに便利そうである。身につけておきたい。

層のCokernelが層にならない例(一発ネタ)

数学

複素関数論を学んでいれば学部の2年生でも作れそうな例なのであるが自分はSchapiraのLecture notesで見るまで気付かなかったし、世間でも余り見かけないので紹介しておく。 \mathcal{O}{\mathbb{C}}上の正則関数のなす{\mathbb{C}}ベクトル空間の層だと思い、その間の準同型として正則微分を取る。この時任意の円盤上ではCokernelがゼロになるが、例えば単位円盤から原点を除いた開集合上では1/zがCokernelの非自明な元となるため、層のseparation conditionを満たさない。

(線形)微分方程式論のためのSheaf Theory

数学

無論ここで層の定義や性質を述べるようなことはできないのだが、線形の微分方程式論をやる上で微分方程式ベクトル束上の接続として捉え直すと幾何学的なバックボーンが得られる。 そうした時に層として考えた方がkernel(これは解空間にあたる)を取るなどの操作が何かとしやすい反面、参入障壁がやや高いように思われる。 こうした文脈で凡そ考えなければならないようなことがほぼ全て書いてあるようなPDFを見かけたのでシェアしたいと思う。
http://www.mast.queensu.ca/~andrew/teaching/distribution-course/pdf/sheaves.pdf
Queen's UniversityのAndrew D. Lewis氏によるものである。

ARC Welderのアプリを削除する

Linux

AndroidのアプリをPC上でも使えて便利なARC Welderだが、一度にひとつのアプリしか扱えないため、古いアプリのキャッシュがどんどん残ってしまって鬱陶しい。消してしまいたいのだが調べてもイマイチ要領を得なかったので、自分でどこに保存されるか探してみた。ファイル名が分からなかったので大分難儀した。備忘録として残してみる。

実行ファイル

実行ファイルと言っても抜け殻でchromeが開くだけである。これはchrome-(ランダムなアルファベット)-Default.desktopなどという名前で~/.local/share/application以下に保存されている。

アイコン

~/.local/share/icons/hicolor/128x128/apps以下に同じくchrome-(ランダムなアルファベット)-Default.pngとして保存されている。

gnome系のデスクトップ環境ならnautilusからchrome-と検索すれば実行ファイルとアイコンが一緒に出てくるので、今回が野蛮に直接消してしまったがもっとスマートな方法があるかも知れない。

GentooでTeXLiveを使う話

TeX Gentoo

たいていのLinuxディストリビューションではTeX関係のパッケージが存在するが、残念ながら日本語ユーザーにとって満足できる代物ではない。私のような数物系の学生がWindowsに愛想を尽かし、UbuntuやなんかでTeX環境を構築する際にやってしまいがちなのは、さしあたりTeXLiveを入れた後、

sudo apt-get install texmaker emacs

とか打ってしまうパターンである。この場合、不必要なTeX関係のパッケージがずるずると芋づる式にインストールされてしまい、時間と電気とSSDの容量が無駄になる。これを回避するためにダミーパッケージを入れる事が可能だが、若干手間である。*1

これがGentooだと単に/etc/portage/profile/package.providedというファイルを作り、

app-text/texlive-2015

などとすれば十全である。注意すべきはパッケージのバージョンを指定しなければいけないこと、一行につき一パッケージしか指定できないというあたりだろう。Gentoo Wiki*2にも詳しく書かれている。